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The fractional reaction-diffusion system is investigated. The linear stage of the stability is studied for a
two-component system with a different order of fractional derivatives for activator and inhibitor. Three differ-
ent cases are considered: the derivative order for an activator is greater than that for an inhibitor, the inhibitor
order derivative is greater than the activator one, and the orders of time derivatives are comparable. Based on
the stability analysis, computer simulation of a Bonhoeffer—van der Pol type reaction-diffusion system with
fractional time derivatives is performed, and the diversity of the pattern formation phenomena is shown.
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I. INTRODUCTION

Studying reaction-diffusion systems (RDSs), which have
been prevalent for many years [1-3], is very important for
understanding nonlinear phenomena in systems with frac-
tional derivatives, which seems to be beneficial for describ-
ing complex heterogeneous systems where conventional ap-
proaches have failed [4,5]. The introduction of time or space
derivatives of fractional order to a standard reaction-
diffusion system, on one side, explains many anomalous
properties, and on the other side, predicts new nonlinear phe-
nomena that we could not have in conventional transport
equations with local sources [6—12].

For complex heterogeneous systems, it is often difficult to
perform a strict derivation of governing equations, and as a
result, these models are often based on purely qualitative
features. In this way, many well-known models, such as the
Oregonator, Brusselator, Gierer-Meinhardt, and Gray-Scott
models [1-3], were written phenomenologically to explain
specific properties in complex systems and revolutionized
our understanding of pattern-formation phenomena. Recent
investigations, for example, show that morphogen formation
in an inhomogeneous cell environment is better described by
an anomalous diffusion model [15]. As a result, such models
in real living systems are probably better described by frac-
tional equations. In this case, the most important question is,
what kind of solutions do these models possess?

Among the applications of time fractional differential
equations, one can find the description of transport of fission
cells during a tumor growth [16], as well as transport of a
substance across a thin membrane [17]. Heterogeneous po-
rous systems are often described by an effective medium of
reaction-diffusion types with fractional derivatives [18]. A
charge-carrier transport in disordered semiconductors due to
non-Gaussian processes and multiple trapping can be much
better described by fractional derivatives [19].

It should be noted that at present, reliable experimental
media for investigating phenomena in reaction-diffusion sys-
tems with derivatives of fractional order can be created syn-
thetically, with the help of circuits and modern solid-state
technology [20-22]. In this case, we can design the layered
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solid-state distributive media, the corresponding layers of
which have to be endowed with the properties inherent to the
fractional order controllers [23,24]. As a result, each layer
can be described by fractional differential equations and can
even have its own fractional index.

II. MATHEMATICAL MODEL

The starting point of our consideration is the coupled
reaction-diffusion equations with indices of different order
[6_12]’
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boundary conditions and with certain initial conditions. Here
ny(x,1),ny(x,t) are activator and inhibitor variables, 0=<x
=1, ;=(7,)%,7,,1; are the characteristic times and lengths of
the system, correspondingly, and A is an external parameter.
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Time derivatives Zlf,x 2 on the left-hand side of Egs. (1)
and (2) instead of standard ones are the Caputo fractional
derivatives in time of the order 0 < @ <2 and are represented

as [25,26]
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where m—1<a<m, m=1,2. It should be noted that Egs. (1)
and (2) at @=1 correspond to a standard reaction-diffusion
system.

III. LINEAR STABILITY ANALYSIS

A. Spectrum analysis for a;=a,=1

We consider RDSs with two variables: one of them is a
variable with positive feedback and the second one is a vari-
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able with a negative one. Specifically, these systems possess
a variety of nonlinear phenomena investigated in recent de-
cades [1-3]. Positive and negative feedbacks require a spe-
cial form of nonlinearities. For example, the first source term
which corresponds to the activator variable equation must be
nonmonotonous and the second one can be monotonous. For
our consideration, it is good to analyze nullclines of the sys-
tem (1) and (2),

W(nlvnza-A)=O’ Q(nl’n2’-/4)=0' (4)

Simultaneous solution of the system (4) leads to homoge-
neous distribution of 77; and 71,. Such analysis is very well
known at a;=a,=1, and the stability of the steady-state so-
lutions of the system (1) and (2) corresponding to a homo-
geneous equilibrium state is determined by the eigenvalue
problem

Nén = F(k)én, (5)

where N\ ,= %(tr F=*\tr> F—4 det F) are eigenvalues of the
matrix

ay(k)/m ‘112/7'1)
anlm,  ank)in)’

k=7j, j=1.2,..., ay(k)=ay -k, an=W, . ap=W, . ay

ro-|

n
:Q'/n’ axn(k)=a, -k, azz:Q,’l2 (all derivatives are taken at

homogeneous equilibrium states W=0=0), and Jn
=(An,,An,)T are new variables An,=n;—;.
For a;=a,=1 and k=0 at the conditions

tr F(0) >0, det F(0) >0, (6)

we can have a Hopf bifurcation. For k# 0, it is possible that
at a certain value of k, eigenvalues A, , are real and one of
them is greater than zero (a Turing bifurcation). The condi-
tions of this instability are

tr F<0, detF(0)>0, detF(ky)<DO. (7)

We can rewrite inequality (6) as a;;>—da,,7,/ 7, according to
time frequency oscillation w=det F(0)/(7,;7,) and inequal-
ity (7) as [1-3]

ayy > — ay(lH5) + 2Vdet F(0)(1,/1,) (8)
according to wave numbers

ko= det F(O)\1,1,. 9)

Instability conditions for these two types of bifurcations are
realized due to positive feedback (a;;>0), and at 7;/7,—0
and /,/1,— 0 they coincide and approach the extremum point
(or points) of W(n;,n,,A)=0.

B. Fractional RDS when a;=a,

Local dynamics. It was shown that in the case of frac-
tional derivative index a;=a,=a (0<a<?2), the system (1)
and (2) is unstable at [11,12,27]

larg(\,)| < am/2. (10)

This condition can be easily transformed to an explicit form.
In fact, the system in a linear approach can be presented as

PHYSICAL REVIEW E 77, 066210 (2008)

LM _ £ Sn, where on is the perturbation vector. The marginal

e
value a= ao=% |arg(\;)|, which changes the stability state,
follows from the conditions (10) and is given by the formula

[11,12]

ImA\
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ImA\
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7T —
ap= — tan

2

T
U2-—tan
Re A>0 2

Re )\<()-
(11)

It should be noted that in the case of the fractional derivative
index, the Hopf bifurcation is not connected with the condi-
tion a;; >0 and can hold even if a;; <0 when the fractional
derivative index is sufficiently large [12].

Fractional RDS. Linear stability analysis shows that the
conditions of the Turing bifurcation are the same as for the
standard system. Having a critical value of « for homoge-
neous perturbation k=0 (11), we can analyze if there is a
condition in which the Hopf bifurcation for k=0 is not real-
ized but at the same time conditions of the Hopf bifurcation
for k# 0 become true. In particular, this situation is consid-
ered in [11,12],

tr F(0) <0, 4 det F(0) < tr’F(0),
4 det F(ky) > tr* F(k). (12)
In this case, the instability conditions are
w det F(ky) )”2
> (ko) =2 - =t —1(4——1 . (13
> afky) =2- 5 tan”! 4750 (13)

The simplest way to satisfy the last condition is to estimate
the optimal value of k=k,

—ayyay )l/Z (14)

ko=2
0 (l%/fz—li/rl

Having obtained Eq. (14), we can estimate the marginal
value of « [11], where

Im )\ (— 46112(1217’1 7_2)1/2
= 2 2
Re A | ger<o L+ 5T
(0117'2—‘1227'1)—2 ) —dapT—dAdnm
hm-hm

Since the conditions of the Turing bifurcation for the case
a# 1 are determined by the formulas (8) and (9) in the non-
linear dynamics, nonhomogeneous structures can be stable or
oscillatory [10,11] depending on the value of fractional de-
rivative index a.

C. Fractional RDS when ay=2a,

Let us consider the case in which a;=2a,=2a (0<a
<1). Due to properties of the Caputo derivatives [24] by
simple substitution, we obtain the system of three equations

ni(x,1)  ny
_ = _" 15
ar® T:/z (15

3“ny(x,1) 12&2n2(x,t)
Ty T2

+Q(n1’n2’-’4)’ (16)
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T%/z ;(DJ ) :l% 1(2 ) + W(nl’n2’A)' (17)
t ox

Stability analysis of the system (15)—(17) can be made by
substituting solutions in the form n; ~ cos(kx) and consider-
ing a system of three linear differential equations, the Jaco-
bian of which is

0 0 /7,
J= (121/7’2 [lzz(k)/Tz 0 . (1 8)
Clll(k)/’T}/z alz/T%/z 0

In this case, the characteristic equation has the form
N+N2b+hc+d=0, (19)
where

b=- a22(k)/7'2, cC=— a“(k)/Tl, d=det F(k) . (20)

Here we would like to single out several characteristic
limits, which can be analyzed analytically in order to under-
stand what kind of effects we meet here.

Limit 0<<det F(k)<<1. Let us first consider a small value
of det F(k). Then, by using the perturbation technique, we
can find the roots, which are determined by the following
expressions:

Ny = det F(k)/[ay,(k) 7],

_fanl) | ,a%z(k) 4a11(k)>
7\2,3~2< n T% + . . (21)

In the case of local dynamics (k=0) at a;;>0 and suffi-
ciently small det F(0), all roots lie on the real axis [28]. The
first root \; can change sign depending on the sign of
det F(0). When nullclines are practically tangent to each
other at det F=~0, the system is unstable, practically for all
values of a. It should be noted that the condition det F(0)
>0 can be rewritten as dn,/dn|g-o>dn,/dn|y-o, which
means that the second nullcline (Q=0) has a greater slope
than the first one (W=0). This is why a positive value of the
determinant det F(0) does not lead to instability. The second
root \, is positive because the value of the radical is greater
than |ay,| (a;; >0 inside the interval where the positive feed-
back is realized). Consequently, only the third root A5 is al-
ways negative.

If k#0 for a certain value of k, the value of det F(k)
becomes less than zero and the first eigenvalue can be posi-
tive if a;;(k)>0. Moreover, coefficient a,(k) is negative
even if the coefficient a,;(k) is negative for large values of k
and, consequently, homogeneous oscillations will depress the
emergence of inhomogeneous dissipative structures with &
>[;! at |det F(0)| <1. But for k~k, defined from Eq. (9), it
appears that the conditions of the Turing instability in non-
linear dynamics will come into play with conditions of ho-
mogeneous oscillations, and we expect a complicated pattern
formation.

General case a;=2a,=2a (0<a<1). In this case by
simple substitution A=u—b/3, and introducing the new pa-
rameters
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p=c—b*3, q=d-bc/3+2b%27, (22)

we can obtain the depressive cubic equation u’+pu+g=0
and eignevalues of the equation (19) are represented by Car-
dano formulas,

Ni=A+B-b/3, (23)
No=—(A+B)2+i\3(A—B)2-b/3, (24)
Ny=— (A +B)/2—i\3(A - B)2 - b3, (25)

where A=3-¢/2+VA, B=3—-q/2—\A, A=(q/2)*+(p/3)>.

Let us analyze eigenvalues of the equation (19). If the
value of A <0, then all roots of Eq. (19) are real. In this case,
if at least one of the roots is positive, then the system will be
unstable and will lead to oscillations for practically any value
of a. We can see that at A+B>b/3, the first root leads to
instability and the second two could be less than zero. In the
opposite situation, the first one is negative and one root of
the two others leads to instability. So, as a result, the system
could always be unstable either to the first eigenvalue or to
one of the second two. A detailed analysis of the eigenvalues
for specific nonlinearities is given in the next section. Here,
we would like to conclude with just the general properties of
the system.

If A>0, then A,B and consequently \; are real and the
roots N\,,A3 are complex. In this case if A+B>b/3, then the
system is unstable according to any value of a. At A+B
<b/3, the first root is real and negative and the system could
be unstable for a certain value of a (a> «),

V3[A(K) - B(k)]
2b(k)/13 +A(k) +B(k) |

ay(k) = p tan™! (26)

As a result of this instability, we can expect nonlinear oscil-
lations that could be homogeneous for k=0 if a,(0) < ay(k)
and nonhomogeneous (k# 0) if ay(k) < a(0).

It should be noted that for k # 0, conditions of instability
according to this wave number are stricter than homoge-
neous oscillations. This means that homogeneous oscillations
arise at smaller values of «a( than inhomogeneous ones. So,
the conditions of Turing instability (8) do not depend on «j
and can be easily realized in the system; we can expect com-
plicated dynamics of pattern formation when simultaneous
conditions of instability become true.

D. Fractional RDS when 2a,=a,

In the case 2a;=a,=2a (0<a<1), the characteristic
equation

all(k)/Tl_)\ alz/Tl O
det(J = NI) = 0 Y 1n? =0
an/™?  ank)/Ty? -\

(27)

is represented by Egs. (23)—(25), where coefficients b and ¢
interchange their values,
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b=—a11(k)/7'1, C=—a22(k)/7'2. (28)

The similar speculation as before shows that the system
could be unstable practically for all values of «. In this case
for the roots (19), we have one negative root and two com-
plex roots, the real part of which is greater than zero.

At the limit 0 <det F(k)<1, the three roots are real and
two of them (A, 3) are positive,

Ny = det F(k)/[ax(k) ],

1<an<k> NG 4a22<k>>
2 7i - 7% ) .

In fact, considering local dynamics and recalling that the first
variable is an activator [a,;(0)>0] and the second one is an
inhibitor [a,,(0) <0], we conclude that the first root is nega-
tive [det (0) >0] and the second and third eigenvalues X, 3
are greater than zero. If the expression inside the radical is
positive in Eq. (29),

Ny3 =

(29)

a2 +4daytit, >0, (30)

we have two real eigenvalues greater than zero. As a result,
instability can have a place for sufficiently small values of

_ )\ O TII/m

-\ 0

0 0 -\
det(J = \I) = 0 0 0
an (k)™ apy A 0
0 0 0
0 0 0
azl/T(zl/p) Clzz(k)/’r(zl p) 0

can be transformed to the polynomial characteristic equation
of the form

e 20 gttty
T2 71

+ (= 1)™Pdet F=0. (31)
The solution of such an equation can be obtained numeri-
cally. At the small value of e=det F, it is always possible to
find the roots with the value close to zero,

N = (meay)'™ ifa,<a, iel,m, (32)
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ap, . At a%l +4a227%/ 7, <0, we have the minimum value of
ay (a> ay),

461227;12
ay = 1+2— s
apm

when oscillations start to arise. It is easy to obtain that
ay(k) >« and, as a result, the conditions of the Hopf bifur-
cation for k=0 are realized earlier. In this case, conditions of
the Turing bifurcation (8) and (11) are valid and we can
obtain the interaction of these two instabilities and complex
pattern formation.

E. Fractional RDS with arbitrary rational «a;, a,

With arbitrary rational «; and a, (for example, a; > a,),
by a certain substitution, the system can be transformed to
the set of many differential equations. In fact, the fractional
derivative index being the “greatest common factor” « of the
values a;=ma and a,=pa simultaneously, m,p € N, we ob-
tain the system of m+p differential equations. In this case,
the matrix characteristic equation

0 0 0 0
0 0 0o x'm
Tl/m O 0 0
_)\ TIl/m
-~ 75" 0 0 =0
0O - 0 =\ 0 0
0 - 0 -x 570
oL
Y
[
)\i = (Tlé/all)l/p if 23] > a5, i e G (33)

and to determine where they are greater than zero entailing
the instability. Of course, the system can be unstable owing
to the other eigenvalues A, as it was in the situation consid-
ered above. Having found these eigenvalues, we can estab-
lish the conditions sufficient for instability.

Here we explore numerically the system dynamics when
the parameters of the derivative indices are different and
change from small values practically to two. To be specific,
we employ a two-component reaction-diffusion system (1)
and (2) for the source terms determined by a Bonhoeffer—van
der Pol kinetics. Such an approach is very popular for a
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FIG. 1. Imaginary (gray lines) and real parts (black lines) of
eigenvalues as a function of 7] at @;=a, for k=0 (a) and k=1 (b).
The other parameters are =2, 1=12, =1, 2=0.1, l%: 1.

standard reaction-diffusion system, and a lot of recent publi-
cations are devoted to finding nonlinear solutions in such
media (see, for example, [29-31]).

IV. SOLUTIONS OF THE COUPLED FRACTIONAL RDS
FOR A BONHOEFFER-VAN DER POL TYPE RDS

As an example, we consider here a Bonhoeffer—van der
Pol type RDS with cubical nonlinearity (see Refs.
[2,3,11,12]). In this case, the source term for an activator
variable is nonlinear, W=n, —nf—nz, and it is linear for the
inhibitor one, Q=-n,+6n;+.A. The homogeneous solution
of variables 7} and 71, can be determined from the system of
equations W=0=0, and for determination of 7z; we have the
cubic algebraic equation

(B- Vi, +m/3+A=0. (34)

Calculation of the coefficients a;;: a;;=(1 —ﬁ%), ap=-1,
ay=, ay=—1 at homogeneous state (34) makes it possible
to investigate the eigenvalues of the system explicitly. As a
result, we can see that at 7;/7,—0 and [/;//,—0 in a stan-
dard RDS, the instability domain is determined at |i7;| < 1. In
this case, the simultaneous conditions of the Hopf (6) and the
Turing (7) bifurcations are realized.

The case a;=a,>1. Real and imaginary parts of the ei-
genvalues for k=0 obtained numerically for each particular
point 77; as a solution of the equation for a certain relation-
ship between 7, and 7, are presented in Fig. 1(a). For these
parameters, we see that the real part of the roots is always
less than zero and the imaginary one on some interval of 7,
becomes nonzero. In this case, when the fractional derivative
index becomes greater than some critical value «
=7 tan~!(Im A/Re \), the instability condition (11) holds
true. So, at &> a; we have homogeneous oscillations. In this
case, at the values of a(> 1.5, instability conditions are tak-
ing place in the interval 1.8<|it,| =4.5.

A similar plot can be presented for the eigenvalues when
wave number k # 0 (for example, k=1). In Fig. 1(b), imagi-
nary parts of the eigenvalues are presented for the same pa-
rameters of the system. As we can see from this figure, when
nullclines have an intersection point in the interval |iz;| be-
tween 4.5 and 6, the system is stable according to homoge-
neous oscillations. At a certain value of «, instability condi-
tions are possible to realize for k=1. This means that at least
perturbations with this wave number are unstable (they are

PHYSICAL REVIEW E 77, 066210 (2008)

FIG. 2. The oscillatory structures obtained from numerical
simulations of the system (1),(2). Dynamics of variable n; on the
time interval (0,10) for =19, a,=1.75, 7=1, =1, =0.1, [
=1.0, A=-10, B=3. Initial conditions are n?:r_zl—0.0S cos(kgyx),
ng=ﬁ2—0.05 cos(kox).

unstable for oscillatory fluctuations). This situation is quali-
tatively different from the integer RDS, whether the Turing
(k#0) or Hopf (k=0) bifurcation takes place. This depends
on which conditions are easier to realize. In the system under
consideration, we can choose the parameter 4.5<m; <6
when we do not have a standard Hopf or Turing bifurcation
at all. Nevertheless, we obtained that the conditions for the
Hopf bifurcation can be realized for nonhomogeneous per-
turbations with wave numbers k# 0 [11,12].

This phenomenon is inherent to the system with different
order of fractional derivatives if the difference between them
is not so substantial. In the case considered above, when one
index is two times greater than the other, the conditions of
the existing Hopf bifurcation for nonhomogeneous perturba-
tions becomes stricter than the conditions of the standard
Hopf bifurcation for k=0. When the indices are comparable,
then the domain of existing oscillatory instability conditions
is sufficiently wide.

The result of computer simulation of such nonlinear non-
homogeneous oscillations for «; = «, is presented in Fig. 2.
For a numerical simulation of the system (1),(2), with corre-
sponding initial and boundary conditions, we used the finite-
difference schemes based on Griinwald-Letnikov and
Riemann-Liouville definitions [13,24,25], the application of
which is considered in detail in Ref. [14].

It should be noted that the presented phenomena are real-
ized outside the increasing path of nullcline W=0 (|iz;| >1)
and these phenomena are typical for different relationships
between system parameters.

The case a;> a, (0<a;,a,<2). The investigation of the
eigenvalues for k=0, depending on parameter i, iS pre-
sented in Fig. 3(a). We see that one real root is always less
than zero. The roots of two others at |7z, | >ﬁ? are complex-
conjugate roots. At |, | <ﬁ(1), these roots become real and
positive. As a result of these conditions, instability in the
system takes place practically for all values of a.

Except for homogeneous oscillations, a condition of the
Turing instability becomes true if the ratio of /;//,<<1. As an
example, the plot of the eigenvalues for k=1 is presented in
Fig. 3(b), where at |iz,| <7\ all of the roots are real and one
of them corresponds to stationary inhomogeneous structures.
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FIG. 3. Imaginary (gray lines) and real parts (black lines) of
eigenvalues as a function of 77; obtained from solution of Eq. (19) at
a;=2a, for k=0 (a) and k=1 (b). The other parameters are
=1.1, 7,=0.1, n,=1, [3=0.1, B=1.

At i, ] <ﬁ’f, we could have inhomogeneous oscillations
of the structures if the conditions of this instability are softer
than conditions of homogeneous oscillations. But this do-
main is very narrow in parameters, and practically for all
parameters we have ay<<ay(k).

Computer simulation of the system is presented in Figs. 4
and 5. In Fig. 4(a), we can see the simplest pattern formation
scenario corresponding to homogeneous oscillations when
homogeneous solution 7z is close to zero. By moving beyond
this point by increasing .4, homogeneous oscillations are
slightly modulated by the inhomogeneous mode. At a certain
value of A, the Turing instability appears and we get very
complicated patterns oscillating in space and time [Fig.
4(b)]. A successive increase of A to 77;=1 again leads to
slightly inhomogeneous oscillations and at a certain 7i2; > 1
the system becomes stable.

By increasing the fractional derivative index, we revealed
spatiotemporal oscillations in the stability domain |iz;| > 1
for the Turing bifurcation [Figs. 4(c) and 4(d)]. The problem
is that homogeneous oscillations are not connected with in-
stability domain |iz;| <1, because these oscillations are de-
termined by condition (11). If they have a large amplitude
and period, the variables n;,n, fall into the region where
conditions of the Turing instability become true (|iz;| <1).
As a result, space structures start to arise. If these oscillations
are sufficiently slow compared to the characteristic time of
the inhomogeneous structure formation, the developing
structures become of greater amplitude. Due to the high
value of a (@<2), oscillations continue their path through
the stable part of nullclines [(|7z;| >1)] and inhomogeneous
structures start to destroy themselves. After that, a new pe-
riod of structure formation begins to rise. Several plots of
such spatiotemporal structures are presented in Figs. 4(c) and
4(d).

Computer simulation shows that the interplay between the
Hopf and Turing bifurcations, which leads to complicated
dynamics, is typical for a wide spectrum of parameters «
from a small one such as @=0.1 to 1. For example, typical
spatiotemporal structures for different parameters of a are
presented in Figs. 5(a)-5(c). These spatiotemporal patterns
emerge as a result of the interplay between the Hopf and
Turing bifurcations. In fact, according to Fig. 3, eigenvalues
for k=0 and 1 in the system parameters are practically the
same in the vicinity of the point |iz; | =0. In this case, differ-
ent initial conditions for k£ # 0 lead to more complicated spa-
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(b) 0 20
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(d) 0 16

FIG. 4. Spatiotemporal structures obtained from computer simu-
lation of the system (1),(2). Dynamics of variable n; for a;=1.5,
a,=0.75, A=-0.2 (a); a;=1.5, @,=0.75, A=-0.3 (b); a;=1.8,
a,=0.9, A=-0.5 (¢); @;=1.8, @,=0.9, A=-0.7 (d). The other pa-
rameters are 7,=0.1, n,=1, [7=0.1, 5=1.0, B=1.1.
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FIG. 5. Pattern formation scenario for a;=1.0, @,=0.5, A 12
=-0.01, B=1.1 (a); @;=1.2, ,=0.6, A=-0.1, 8=2.0 (b); @;=0.9,
a,=0.45, A=-0.01, B=1.1 (c). The other parameters are 7,=0.1,

m=1,1=0.1, 5=1.0.
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FIG. 6. Imaginary (gray lines) and real parts (black lines) of
eigenvalues as a function of 7z} at 2a;=a, for k=0 (a) and k=1 (b).
The other parameters are S=1.1, 71=0.1, =1, l%:O.l, l%:l.

standard system with integer derivatives, the system consid-
ered here with indices a;> a, possesses more complicated
nonlinear dynamics. We can conclude that for a; = a,, the
possible solutions are even more diverse. In fact, if in the
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tiotemporal patterns (see Fig. 5), similar to those displayed in

Fig. 4. If the plot in Fig. 4 shows a practically uncorrelated
scenario of patterns, the results presented by Figs. 5(a)-5(c)
display complicated inhomogeneous structure oscillations for
different values of a. The drawn profile of complex “zigzag”
oscillations is given in Fig. 5(c). It should be noted that the
form of these structures is strongly dependent on the frac-
tional derivative indices as well as initial conditions and pa-

rameters of the system under consideration.

The obtained scenario of pattern formation is typical for
the general case a;>a,. We can find that at certain param-

N -":' v \
A N
‘}3_‘.\:\\‘“‘0 ",}/\\ \

AL -1.3

eters the solutions may have a simple form of homogeneous © 016
oscillations or stationary inhomogeneous structures as well,
and can correspond to spatiotemporal structures similar to FIG. 7. Pattern formation scenario for a;=0.55, a,=1.1 (a);

those presented in Figs. 4 and 5. In addition to homogeneous a,=0.45, 0,=0.9 (b); a;=0.5, a,=1.0 (c). The other parameters are
oscillation or stationary structure formation inherent to a 71=04, =1, l%=0.1, l%: 1.0, A=-0.01, B=1.1.
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case «a;/a,=2 we do not have a domain where oscillatory
instability conditions for inhomogeneous wave numbers are
realized, then at comparable values of a;= «, it is easy to
find a domain where a(k) < ay. As a result, we have oscilla-
tory inhomogeneous structure formation [11,12] (Fig. 2).

The case a;<a, (0<a;,a,<2). In the analysis of the
case o) <a,, we start with 2a;=a,. The dependence of ei-
genvalues as a function of 7; is presented in Fig. 6. Similar
to the case considered above at |7, | >ﬁ(1), two roots are com-
plex and one is real. At certain parameters of n?, all three
roots become real, two of them are positive, and the system
loses its stability at any value «. In the vicinity of n; =0,
=1, the roots correspond to analytical solutions (21).

At the same time, at [,/l,<1 and |iz;| <1 the system is
unstable according to the Turing instability. The plot of the
roots of characteristic equation (19) for k=1 is presented in
Fig. 6(b). At |i7,| <, the system has one positive real root
of great value and two complex-conjugate roots. Namely, the
first root is responsible for stationary pattern formation. By
increasing «, we can always obtain homogeneous oscilla-
tions, which, on the one hand, will lead to oscillations of the
structures, and on the other hand can destroy them and lead
to homogeneous oscillations.

The typical scenario of the structure formation in the case
2a=a, is not so diverse as for the case considered above,
and at a wide limit of system parameters we have either
homogeneous oscillation or stationary dissipative structures.
In a certain way, this is similar to the case that we have for
integer derivative indices. Nonlinear dynamics correspond-
ing to these roots is represented by Figs. 7(a)-7(c). For ex-
ample, at certain parameters we get sufficiently smooth ho-
mogeneous oscillations. A decrease of « leads to the
interplay between structures that arise from the Hopf and
Turing bifurcations [Fig. 7(c)]. A successive decrease of «
leads to stable inhomogeneous structures [Fig. 7(b)].

For ;= a,, the diversity of the structure formation in-
creases and we can find the solutions similar to those pre-

PHYSICAL REVIEW E 77, 066210 (2008)

sented in Figs. 4 and 5. This is due to the fact that the Turing
and Hopf bifurcations have independent parameters for their
realization. The Turing bifurcation depends on the ratio of
the characteristic lengths and is connected with the instabil-
ity domain |7z;| <1. The Hopf bifurcation is not connected
with the domain |77;| <1 and is realized at a wide spectrum
of parameters a;<a,. This makes it possible to find the
scenario of a complicated pattern formation due to the inter-
play between these two types of instabilities. Even in the
linear theory, we can find conditions of oscillatory instability
for k # 0 practically not realized at a,/ ar;=2. In this case, the
inhomogeneous fluctuation becomes unstable according to
oscillatory perturbations, and nonlinear structures are similar
to those presented in Fig. 2.

V. CONCLUSION

The present study focuses on the influence of the order of
fractional derivative indices on pattern formation in frac-
tional reaction-diffusion systems. We showed that in a wide
spectrum of parameters, describing the system from a prac-
tically elliptic case to hyperbolic systems, we have a diver-
sity of complex pattern formation. In contrast to a standard
RDS with integer indices, here the fractional RDS possesses
properties connected with the emergence of new types of
bifurcations due to fractional derivative indices. We showed
that in the case of a small order of derivatives (a<1), the
diversity of pattern formation is comparable to the diversity
of pattern formation at > 1, up to values of a=2 describ-
ing practically two-component distributed oscillatory media.
Finally, we wish to remark here that spatiotemporal pattern
formation phenomena realized in fractional order RDSs have
to stimulate experimental investigation of these phenomena
in distributive circuits created with the help of modern solid-
state electronics [20-22].

[1] G. Nicolis and I. Prigogine, Self-Organization in Non-
Equilibrium Systems (Wiley, New York, 1977).
[2] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).
[3] B. S. Kerner and V. V. Osipov, Autosolitons (Kluwer, Dor-
drecht, 1994).
[4] G. M. Zaslavsky, Phys. Rep. 371, 461 (2002).
[5] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
[6] B. 1. Henry, T. A. M. Langlands, and S. L. Wearne, Phys. Rev.
E 72, 026101 (2005).
[7] B. I. Henry and S. L. Wearne, Physica A 276, 448 (2000).
[8] T. A. M. Langlands, B. I. Henry, and S. L. Wearne, Phys. Rev.
E 77, 021111 (2008).
[9] B. L. Henry, T. A. M. Langlands, and S. L. Wearne, Phys. Rev.
E 74, 031116 (2006).
[10] V. Gafiychuk and B. Datsko, Physica A 365, 300 (2006).
[11] V. Gafiychuk and B. Datsko, Phys. Lett. A 372, 619 (2008).
[12] V. V. Gafiychuk and B. Y. Datsko, Phys. Rev. E 75, 055201(R)
(2007).

[13] R. Gorenflo and E. A. Abdel-Rehim, J. Comput. Appl. Math.
205, 881 (2007).

[14] V. Gafiychuk and B. Datsko, Appl. Math. Comput. 198, 260
(2008).

[15] G. Hornung, B. Berkowitz, and N. Barkai, Phys. Rev. E 72,
041916 (2005).

[16] A. Tomin, Phys. Rev. E 73, 061918 (2006).

[17] T. Kosztolowicz, K. Dworecki, and St. Mrowczynski, Phys.
Rev. Lett. 94, 170602 (2005).

[18] J. F. Valdes-Parad, J. A. Ochoa-Tapia, and J. Alvarez-Ramirez,
Physica A 369, 318 (2006).

[19] V. V. Uchaikin and R. T. Sibatov, Commun. Nonlinear Sci.
Numer. Simul. 13, 15 (2008).

[20] A. Adamatzky, B. D. Costello, and T. Asai, Reaction-Diffusion
Computers (Elsevier, Boston, 2005).

[21] T. Asai, Y. Kanazawa, T. Hirose, and Y. Amemiya, Int. J. Un-
conv. Comput. 1, 123 (2005).

[22] T. Serrano-Gotarredona, IEEE Trans. Neural Netw. 14, 1337
(2003).

066210-8



SPATIOTEMPORAL PATTERN FORMATION IN ...

[23] L. Petras, Chaos, Solitons Fractals 38, 140 (2008).

[24] I. Podlubny et al., Nonlinear Dyn. 29, 281 (2002).

[25] S. G. Samko, A. A. Kilbas, and O. 1. Marichev, Fractional
Integrals and Derivatives: Theory and Applications (Gordon
and Breach, Newark, NJ, 1993).

[26] I. Podlubny, Fractional Differential Equations (Academic,
New York, 1999).

[27] D. Matignon, Computational Engineering in System Applica-

PHYSICAL REVIEW E 77, 066210 (2008)

tion IMACS (IEEE-SMC, Lille, France, 1996), Vol. 2, p. 963.

[28] V. Gafiychuk, B. Datsko, and V. Meleshko, Physica A 387,
418 (2008).

[29] X. Yuan, T. Teramoto, and Y. Nishiura, Phys. Rev. E 75,
036220 (2007).

[30] P. Hoffmann, S. Wehner, D. Schmeisser, H. R. Brand, and J.
Kuppers, Phys. Rev. E 73, 056123 (2006).

[31] Y. Hayase and T. Ohta, Phys. Rev. E 66, 036218 (2002).

066210-9



